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Approximations Fnf and Hnl to a function I are defined, respectively, as the
partial sums of order n of its expansions in Fourier series and Chebyshev series
of the second kind, and they are compared, respectively, with the best trigono­
metric and best algebraic polynomial approximations JB and IB of degree n in
L[O, 27T] and L1 [-1, 1]. It is shown that the L1 norm of1- Fnldiffers from that
of1- JB by at most a factor of the order of log n, and that, similarly, the L 1 norm
of1- Hnf differs from that of1- I B by at most a factor of the order of log n.
These results are discussed in the context of near-best approximations and minimal
projections in L p spaces. Also, it is shown that, ifIhas a certain type of lacunary
series expansion, then Fnfand Hnfare identical to JB andlB, respectively.

1. NEAR-BEST ApPROXIMATIONS AND MINIMAL PROJECTIONS

Suppose thatfis an element of a normed linear function space X, and that
f* is an element of a subspace Y. Then a practical measure of goodness of
the approximationf* to f can be defined in terms of a concept of "near-best"
(see Mason [1]). Specifically, f* is said to be "near-best within a relative
distance p" if

Ilf - f* II :0:;; (1 + p) Ilf - jB II, (1)

where f B is any best approximation in Y to f
One particularly important type ofapproximation is formed by a projection

P of X into a subspace Y. (A projection is a bounded linear map of X into Y,
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such that Py = y for yin Y). Bya standard inequality (Cheney and Price [2]),

111- PII! ~ 11/ - P II . dist(f, Y),

where / is the identity map; thus

III - Pili ~ 11/ - P II . III - jB II

for any best approximation/B. But

Ii / - P II ~ I + II P II,

and therefore

Iii - Pili ~ (I + II PI/) '111 - jB II·

(2)

(3)

(4)

(5)

Thus (5) provides a realization of (I), and any projection P has the property
that PI is a near-best approximation to I within a relative distance II P II.
The infimum of the measure II P II taken over all projections P is termed the
"relative projection constant," and any projection for which the infimum is
attained is called a "minimal projection" [2].

An alternative measure, namely II I - P II, is suggested by (3), and any
projection for which II I - P II attains its infimum is called a "cominimal
projection" [2].

Two important choices of {X, Y} are {Lp[a, b], Iln } (approximation by
algebraic polynomials ofdegree n to L p functions in the L p norm, I ~ P ~ (0)
and {£p[O, 27T], lln} (approximation by trigonometric polynomials of degree
n to 27T-periodic L p functions in the L p norm, I ~ P ~ 00). For both of
these choices of {X, Y}, the best approximationjB in Y to anylin X exists and
is unique for each p, I ~ p ~ 00 (see [3]). The best approximation is not
generally known explicitly, except when p = 2, but the minimal and
cominimal projections are known for all p in the case of trigonometric
approximation. Indeed the Fourier projection Fn , namely the partial sum of
order n ofthe Fourier series off, is minimal and cominimal in every £p[O, 27T]
(Golomb [4, p. 254]). In the particular case of the space (:2." of continuous
periodic functions, En is the unique minimal projection (Cheney, et al. [5]),
and (see [2]) the relative projection constant is

II Fn II", = An = -21 J2'" I sin(~ ~ t)t Idt.
7T 0 sm zt

(6)

The quantity An , the n-th Lebesgue constant, has the asymptotic behaviour
(see [2] or [4]):

4
An = -2 log n + 0(1).7T

(7)
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The Chebyshev polynomials Tn(x) and Un(x) of degree n of the first and
second kinds are defined by:

Tn(x) = cos nO, U ( ) = sin(n + 1)0
n x sin e ' (8)

where x = cos e, and the systems {Tk} and Uk} are orthogonal with respect
to the weight functions (1 - X 2)-1/2 and (1 - X 2)1/2, respectively, on [-I, 1].
Partial sums of orthogonal expansions are projections; in particular, denoting
by Gnf and HnJ, respectively, the partial sums of order n of the expansions
of fin {Tk } and {U,J, we have that Gn and H n are projections. From (6),
Golomb [4] immediately deduces that, in {C[-I, I], lIn},

(9)

This follows by identifying J(e) in C21T with f(x) in C[-I, 1] under the
transformation x = cos e. In this case Gn is not a minimal projection,
although the relative projection constant is known to lie in the interval
(An - 1)/2 ~ x ~ An (see [2]).

In terms of our terminology of "near-best" approximations, (9) establishes
that FnJ is near-best within a relative distance An in {C21T ,fIn}, and (9)
establishes that Gnfis near-best within a relative distance An in {C[-1, 1], lIn}.
The latter result is also proved by a different approach by Powell [6], using
properties of orthogonal polynomials. If we denote by Pnwf the partial sum
of order n of the expansion off in polynomials {cPk} orthonormal with respect
to a (nonnegative) weight w on [a, b], then (see, e.g., [6])

(10)

where

(11)

For the particular choice {Tk }, he shows that

(12)

In Section 2 of the present paper we give results on near-best L 1 approx­
imations by Fourier series and Chebyshev series of the second kind, which
are analogous to the above results on near-best Loo approximation by Fourier
series and Chebyshev series of the first kind. First, we show that

(13)

and, hence, Fn is near-best within a relative distance An in {L1[0, 27T], fIn}'
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Next, by making a suitable transformation, we are able to deduce imme­
diately from (13) that

(14)

and, hence, that Hn is near-best within a relative distance An+! in
{L1[-I, 1], lIn}. We also give an alternative proof of the latter result,
following the orthogonal polynomial approach of Powell [6]. Specifically,
we establish that

(15)

where

(16)

and, in the case of {Uk}' we show that

and
Tn = An+! + 0(1).

(17)

(18)

We remark that we have not obtained equality in any of the relations (13),
(14), or (17). Moreover, we have not yet been able to give an explicit
characterization of the relative projection constant either in {t1 [0, 27T], fIn}
or in {L1[-I, 1], lIn}.

2. NEAR-BEST L 1 ApPROXIMATIONS

In this section we retain all the notation of Section 1; in particular, Fn ,

Pnw, and Hn denote projections formed by partial sums of Fourier series,
orthogonal polynomial series, and Chebyshev series of the second kind,
respectively.

THEOREM 2.1. II Fn 111 :'( An .

Proof For any f in t 1[0,27T], Dirichlet's formula holds (compare
[7, p. 120]):

where

1 f21T
(Fnf)(O) = 27T 0 f(t + 0) Dn(t) dt,

D (t) = sin(~ + i)t
n sm it

(19)

(20)
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From (19),

1 J
2

" IJ
2

" III(Fn f)(8)111 = 27T ° ° f(t + 8) Dn(t) dt d8

1 J2

" J2

"~ 27T ° ° [f(t + 8)1 . I Dn(t)j dt d8.
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(21)

Reversing the order of integrations in (21) (by Fubini's theorem), using the
periodicity off, and recalling the definition (6) of An , we obtain

and the required result follows.
From 2.1 and (5) we deduce:

COROLLARY 2.2. I[f - Fnflll ~ (1 + An) . [If - jB 111 .

COROLLARY 2.3. II Hn III ~ An+1 .

Proof of2.3. For any fin Ll [-I, I], definefO ELl[o, 27T] by

fO(8) = sin 8 . f(cos 8).

From the definition (8) of {Uk} it follows that

Fn+1fo = (Hnf)°.

Since fo is odd and periodic,

lifO III = 2r IfO(8)1 d8 = 2r If(x) I '1 sin 81 d8

° °
= 2r If(x) I sin 8 de = 2r If(x) Idx

° -1

= 21If[11'

Similarly, from (24),

(22)

Q.E.D.

(23)

(24)

(25)

(26)

Hence the required result follows by substituting (25) and (26) into (22).
Q.E.D.

From 2.3 and (5) we deduce:

COROLLARY 2.4. Ilf - Hnflll ~ (l + An+1) '11f - jB Ill'
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Corollary 2.4 may alternatively be obtained from first principles by
Powell's approach [6] as follows:

THEOREM 2.5. Ii! - Pnwfill ~ (1 + Tn) '11f - Pill' (27)

Proof Set E =f - pnwfand EB ==f - p. Then (compare [6])

E(X) = EB(X) - rEB(y) w(y) t epix) epk(Y) dy.
a k~O

Taking moduli, applying standard inequalities, and integrating,

Reversing the order of integrations (by Fubini's theorem) and applying
H61der's inequality, we obtain (27).

LEMMA 2.6. For the orthonormal system

and Tn = An+l + 0(1).

Proof In this case, w(x) == Y(1 - x2). Setting x = cos 0 and y = cos if
in (16),

2 11 In+l ITn = max - 5 L sin kO sin kif dO,
0';;;"'';;;11 7T 0 k=O

I 11 In+l n+l I
= m:x -;; 5 Leos k(O - if) - Leos k(O + if) dO,

o k~ k~

(29)

where Dn+l is defined by (20). The integral in (30) is independent of if,
and hence, setting if = 0,

Also, setting if = 7T/2 in the integrand in (29),

2 11 In+l k7T I
Tn ;? -;; 50 k~l sin kB sin T dB.

(31)

(32)
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By summing the series in (32) and applying analysis similar to that on p. 213
of [7], it is straightforward to show that

(33)

The required results follow from (7), (31), and (33). Q.E.D.
Clearly, Corollary 2.4 is an immediate consequence of 2.5 and 2.6.

3. BEST ApPROXIMATIONS AND LACUNARY SERIES

A basic property of the Chebyshev polynomials (see [I)) is that 21- n Tn(x)
and 2-n Uix) are the best monic polynomial approximations of degree n
to the zero function in L",[-l, 1] and L1[-I, 1], respectively. It immediately
follows that, if f is a polynomial of degree n + 1, then the partial sums of
order n of its {Tk} and {Uk} expansions are, respectively, its best L", and L1
polynomial approximations of degree n. Similar, but more general results
hold for various functions f having lacunary series expansions (i.e., expan­
sions in which "almost all" coefficients are zero). For example, if b is any odd
integer greater than one and a is any real number of absolute value less than
one, then the function

'"f = L aiTbi(x)
i~O

(34)

is in C[-1, 1] and has the property (p. 132 of [7]) that, for every n, the
partial sum of order n of its {Tk } expansion is precisely its best Loo polynomial
approximation of degree n. The function

'"
j = L ai cos biB

i=O

(35)

is related under the transformation x = cos B to the function f of (34) by
the identity

](B) = f(cos B) = f(x).

Hence Ilj(B)II", = Ilf(x)ll", and II(Fn])(B)lloo = li(Gnf)(x)lloo , and we deduce
that] has the property that the partial sum of order n of its Fourier series is
precisely its best L", even-trigonometric approximation of degree n.

It is interesting that], as defined in (35), is in fact the Weierstrass function
([7, p. 128]) which, for I ab I > 1, is nowhere differentiable. However, for
I ab I < 1, (35) may be differentiated term by term to yield a uniformly
convergent expansion.
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We now prove some analogous results in the L 1 norm for lacunary series
and Chebyshev series of the second kind.

Consider a real function/having an expansion

00

1"-' L: CiUkix)
i~O

in which each Ci is nonzero and {k i } is a sequence of integers satisfying

(36)

ko = 0,

(i ~ 1),
(37)

where each ri is an integer greater than one. For every n we denote the best
L 1 polynomial approximation of degree n to I by InB. Now, using the
definition of Ulc and the transformation x = cos 8, we obtain from (37) that

sin(ki + 1)8 . sin ri(ki + 1)8
sin 8 sin(ki + 1)8

Thus

where

(38)

R-(x) = sin ri(ki + 1)8
, sin(ki + 1)8

for x = cos 8.

Clearly Ri is a polynomial in x of degree (ri - l)(ki + 1). Also

R-(x) = si~ riif;
, sm if; ,

and hence

! Ri(x)! ~ ri

If, for any given m, we define

where if; = (k i + 1)8,

for all x in [-1, 1]. (39)

M = km+l - 1, (40)

then it is clear from (36) that HN/is identical to HMlfor every N such that

(41)

Now, if I is continuous, a sufficient condition for HMI to be the best L1
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approximation fM B is that f - H ...d should have precisely M + I changes
of sign occurring at the M + I zeros of UM +1 (see [1] or [3]). Thus, if we can
show that

(i) f is continuous, and

(ii) for each m,

(42)

(43)

where @m does not change sign on [-1, 1], then it will follow that HMf is
identical withfMB • It will then further follow that, for every N satisfying (41),
HNfis identically fN B , and hence that Hnfis identically fnB for all n. In the
following theorem and corollary we give restrictions on {Ci} and {ri} which
are sufficient to ensure the two required properties.

THEOREM 3.1. If {Ci} is bounded and if, for every m,

Sm = i~~+2 ICi I 'li~D+2 r51 :(;; Icm+1 I,

then the series (36) is uniformly convergent, f is in C[-I, I], and Hnf is
identically fn B for every n.

Proof Since I Uk I is bounded by k i + I, the expansion (36) is majorized
i

by

00

I Co I + I C1 I . (k1 + I) + L I Ci I . (k i + 1)
i~2

= I Co I +I C1 I . (k1 + 1) + so(k2 + 1), by (37) and (43).

Thus (36) is uniformly convergent and, hence, f is in C[-1, I]. Now, from
(38),

00

f - HMf = L C;Uk,(X) = UM+l(x) . @m(x),
i~m+l

where

@m = Cm+1 + f Ci \ TI Rlx)l.
i=m+2 L~m+2 \

By (39),

I @m I :(;; I Cm+l I + I Sm I

and, hence, @m is in C[-I, I]. By (43), @m does not change sign in [-1, 1].
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COROLLARY 3.2. IfI has the expansion

00

I'" L aiUbi_l(X)'
i~O

where b is any integer greater than one and a is any real number such that

O<labl~t

(44)

(45)

then the series (44) is uniformly convergent, I is in C[-l, 1], and Hnl is
identically InB lor every n.

Proof In this case,

Hence

and ri = b. (46)

00 I ab IL I a Ii bi - m - l = . I a Im+!,
1 - Iab I

~ I a 1m+! = I cm+! I, by (45).

Since I a I < 1, Sm is convergent and the result follows immediately from 3.1.
Q.E.D.

The function
00

fO(8) = L Ci sin(ki + l){}
i=O

is related to I of (36) by

fO(8) = sin 8 . f(cos 8).

Hence, as in the proof of 2.3 above,

lifO 111 = 211/111 and

and we deduce that, when {Ci} satisfies the hypotheses of Theorem 3.1, the
partial sum Fnfo of the Fourier series of fO is precisely the best L l odd­
trigonometric approximation of order n to fO.
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